Math 270 Basic Discrete Math Practice Test 3 Sections 5.1, 5.2, 5.3, 5.4, 5.6, 5.7

Name: (Please Print)

Directions: Answer the problems below. You may use scientific (non-graphing) calculators, but no other electronic devices. Show all work.

1. Prove, using mathematical induction, that for all integers $n \ge 1$,

 $3 + 7 + 11 + \dots + (4n - 1) = 2n(n + 1) - n.$

2. Let a_1, a_2, a_3, \ldots be the sequence defined recursively as follows:

$$a_1 = 1, a_2 = 20$$
, and for all $k \ge 3, a_k = 5a_{k-1} + 6a_{k-2}$.

Use strong induction to prove that for all integers $n \ge 1$, $a_n \le 6^n$.

- 3. Provide short responses for parts a.-d. below.
- **a.** Calculate each of the following:

i.
$$\prod_{i=1}^{4} (2i) =$$

ii.
$$\sum_{i=1}^{4} (2i-1) =$$

iii.
$$\frac{4!}{2!} =$$

iv.
$$\binom{6}{2} =$$

v.
$$\binom{6}{4} =$$

vi.
$$\binom{6}{0} =$$

b. Suppose the sequence a_1, a_2, a_3, \ldots begins with the terms $8, -27, 64, -125, 216, \ldots$ Find an explicit formula for a_n .

c. Write the product $(1-t)(1-2t^2)(1-3t^3)(1-4t^4)$ using product notation.

d. Transform the sum $\sum_{j=3}^{n+1} \frac{j^2 - 1}{n - j + 2}$ by making the change of variable i = j - 2.

4. Find explicit formulas for the following recurrence relations. (You do *not* need to prove your answers are correct.) Simplify your answers as much as possible: for full credit your answers should include no summation or product notation.

a. $a_1 = 1, a_k = a_{k-1} + 2$ for all $k \ge 2$.

b. $b_1 = 2, b_k = k \cdot b_{k-1}$ for all $k \ge 2$.

c. $c_1 = 0, c_k = c_{k-1} + 2k$ for all $k \ge 2$.

d. $d_1 = 1, d_k = 2d_{k-1} + 1$ for all $k \ge 2$.