Math 270 - Basic Discrete Mathematics
Practice Quiz on Section 4.8
Solutions
Directions: Answer the problems given below.

1. Is the number $5+3 \sqrt{2}$ rational or irrational? Why or why not?
$5+3 \sqrt{2} \pi$ irrational: if it were ration, sag
$5+3 \sqrt{2}=\frac{a}{b}$ with $a, b+\mathbb{Z}, b \neq 0$, then
$\sqrt{2}=\frac{a-5 b}{3 b}$, which is rational ny closure and the EPP, a contradiction as $\sqrt{2}$ is irrational!
2. Is it true that whenever x, y are positive irrational numbers, $x+y$ is also irrational? Why or why not?

No, it is not tine: let $x=\sqrt{2}$ and $y=10-\sqrt{2}$. Obsum that $x>0, y>0$
$(\operatorname{since} \sqrt{2} \simeq 1.4<10)$ and x is irrational. $y=10-\sqrt{2}$ is also irratiel, by the sure reasoning as in problem 1.

And sine $x+y=10=\frac{10}{3} \in \mathbb{Q}$, we see that we have a countuexample to the gives statement.

