Math 270 - Basic Discrete Mathematics Practice Quiz on Section 5.3

Directions: Answer the problem given below.

Same as 3 (7 "-4")

1. Prove using mathematical induction that for any integer $n \ge 1$, $7^n - 4^n$ is divisible by 3.

Proof: let
$$P(n) = ["3](\exists n - 4")"$$
; we prove $P(n)$ holds for
all $n \ge 1$ by induction as n .
Bax Gax $(n = 3)$; when $n = 1$, $\exists n - 4^n = \exists -4 = 3$, and
clear's $\exists l_3$, so $P(s)$ holds.
Inductive Styp: let $k \ge 1$ be arbitrary and suffax $P(k)$ holds,
i.e. $\exists l(\exists k - 4^k)$. We must show $P(k+s)$ holds, i.e.,
that $\exists l(\exists k^{k+1} - 4^{k+1})$.
Obsume that
 $\exists^{k+1} - 4^{k+1} = \exists \cdot \exists^k - 4 \cdot 4^k$.
 $= \exists \cdot \exists^k + 4 \cdot 4^k - 4 \cdot 4^k$.
Clear's $\exists l(\exists \cdot \exists^k)$, and it follows that $\exists l(4(\exists^k - 4^k))$.
Clear's $\exists l(\exists \cdot \exists^k)$, and it follows that $\exists l(4(\exists^k - 4^k))$.
 $\exists l(\exists^{k+1} - 4^{k+1})$, so \exists must divide their sum. That is,
 $\exists l(\exists^{k+1} - 4^{k+1})$, so $P(k+1)$ holds. This proves the induction