Math 270 - Basic Discrete Mathematics
Practice Quiz on Section 5.3
Solutions
Directions: Answer the problem given below.
Same $<31\left(7^{k}-4^{\prime \prime}\right)$

Proof" let $P(n)=$ " $3 /\left(7^{n}-4^{n}\right)$ ": we prove $P(n)$ holds tor all $n \geq 1$ by induction on n.
$\operatorname{Baxe} C_{\text {axe }}(n=1)$, When $n=1,7^{n}-4^{n}=7-4=3$, and clary $3 / 3$, so $P(11)$ holds.

Inductive ste: let $k \geqslant 1$ be arbitral and socpox $P(k)$ holds, i.e. $3 \backslash\left(7^{k}-4^{k}\right)$. We mut show $\left.P(k+1)\right)$ holds, ie., that $31\left(7^{k+1}-4^{k+1}\right)$.

Obscure that

$$
\begin{aligned}
7^{k+1}-4^{k+1} & =7 \cdot 7^{k}-4 \cdot 4^{k} \\
& =3 \cdot 7^{k}+4 \cdot 7^{k}-4 \cdot 4^{k} \\
& =3 \cdot 7^{k}+4\left(7^{k}-4^{k}\right)
\end{aligned}
$$

Cleanly $31\left(3.7^{\prime \prime}\right)$, and it follows that $31\left(4\left(7^{k}-4^{k}\right)\right)$ from the I.H., so 3 must divide the res sum. That is, $\left.3 \mid f^{k+1}-4^{k+1}\right)$, so $P(k+1)$ holds. This proves the inductive step, and since the base case holds, $P(n) \pi$ true tonal $n \geqslant 1$ by induction.

