Math 270 - Basic Discrete Mathematics
Practice Quiz on Section 9.3
Solutions
Directions: Answer the problems given below.

1. A state decides that its license plate numbers will each consist of 7 characters: a nonzero digit from 1-9, followed by three upper-case Roman letters (from $A-Z$), followed by three more digits from 0-9. How many license plates contain a repeated letter? (Hint: How many don't contain a repeated letter?)
\# lares pates: $9.26 .26 .26 \cdot 10 \cdot 10.10=158,184,000$
\# with no
routed str: $9.26 \cdot 25.24 \cdot 10 \cdot 10 \cdot 10=140,400,000$,
so \#with a reputed getter is their dotherece,
17,784,000.
2. How many integers from 1 to 2000 are divisible by 4 or by 5 ?

Let $A=\{a \in \mathbb{Z} \mid \leq a \leq 2000,41 a\}$
Since 4.5 have no

$$
B=\{b \in \mathbb{Z} \mid 1 \leq b \leq 2000,51 b\} ;
$$ primes factors in carne,

$$
A \cap B=\left\{x \in \mathbb{Z} \left\lvert\, \begin{array}{ccc}
15 x \leq 2000 \\
s l
\end{array}\right.\right\}
$$

ne wont $|A \cup B|$, which is $|A|+|B|-|A \cap B|$ by $=\left\{\begin{array}{l}\left\{\in E \left\lvert\, \begin{array}{|c}\mid \leq x \leq 2000 \\ 201 x\end{array}\right.\right\}\end{array}\right.$ inchsion-exclussion. Obscuring the

$$
|A|=\left\lfloor\frac{2000}{4}\right\rfloor=500, \quad|B|=\left\lfloor\frac{2000}{5}\right\rfloor=400
$$

and $|A \cap B|=\left[\frac{2000}{20}\right]=100$, he got $|A \cup B|=800$.

