Math 270 Basic Discrete Math Practice Test 3
Sections 5.1, 5.2, 5.3, 5.4, 5.6, 5.7
Name: (Please Print) \qquad Soluturs

Directions: Answer the problems below. You may use scientific (non-graphing) calculators, but no other electronic devices. Show all work.

1. Prove, using mathematical induction, that for all integers $n \geq 1$,

$$
3+7+11+\cdots+(4 n-1)=2 n(n+1)-n
$$

Proof: let $P(n)=" 3+7+11+\cdots+(4 n-1)=2 n(n+1)-n$."
we prove $P(n)$ holds for all $n \geqslant 1$ by induction.
Bax case ($n=1$): We show $P(1)$ wilds: the (t) of $P(1) \pi 3$, whereas the RHS of $P(1)$ is $2 \cdot 1(1+1)-1=4-1=3$, so $(H S=R H$) and $P(1)$ hills.

Inductive step: Let $k \geqslant 1$ be abbitiong and erose $P(k)$ holds, so

$$
3+7+11+\cdots+(4 k-1)=2 k(k+1)-k .
$$

we mut show $P(k+1)$ hods, ie. that

$$
3+7+11+\cdots+(4 k-1)+(4(k+1)-1)=2(k+1)(k+2)-(k+1) .
$$

Starting with the LHS,

$$
\begin{aligned}
3+7+11+\cdots+(4 k-1)+(4(k+1)-1) & =(3+7+\cdots+(4 k-1))+(4(k+1)-1) \\
& =(2 k(k+1)-k)+(4(k+1)-1) \\
& =2 k(k+1)-k+2 \cdot 2(k+1)-1 \\
& =2(k+2)(k+1)-(k+1) \\
& =2(k+1)(k+2)-(k+1) .
\end{aligned}
$$

So $P(K+1)$ holds, proving the inductive sop.
Since the inductive step ard bax cap hod, $P(n)$ is true tor all inters $n \geq 1$.
2. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence defined recursively as follows:

$$
a_{1}=1, a_{2}=20, \text { and for all } k \geq 3, a_{k}=5 a_{k-1}+6 a_{k-2} .
$$

Use strong induction to prove that for all integers $n \geq 1, a_{n} \leq 6^{n}$.
Proof Let $P(n)=" a_{n} \leq 6^{n "}$. We show $P(n)$ holds tor all $n \geq 1$ by strand induction.

Bax (axe) $(n=1,2):$ Since $a_{1}=1 \leq 6=6^{\prime}$ and $a_{2}=20 \leq 36=6^{2}$, both $P(1)$ ard $P(2)$ hold.

Inductive Step: Let $k \geq 2$ be abbitry and spoor $P(1), P(2), \ldots, P(k)$ all hold. We wart to shew that $P(k+1)$ holds, i.e., that $a_{k+1} \leq 6^{k+1}$.

Since $k \geqslant 2, k+1 \geqslant 3$, so

$$
\begin{array}{rlrl}
a_{k+1} & =5 a_{k}+6 a_{k-1} & & \text { (By dulitinn of anat as } k+1 \geqslant 3) \\
& \leq 5 \cdot 6^{k}+6 \cdot 6^{k-1} & \text { (I.H.: P }(k-1) \text { Ans P P(k-2) hold) } \\
& =5 \cdot 6^{k}+6^{k} & \\
& =6 \cdot 6^{k} \\
& =6^{k+1},
\end{array}
$$

so $P(k+1)$ holds. Theneture the inductive sots holds, and she the bax cays hold, $P(n)$ is tine for all $n \geq 1$ by strong induction.
3. Provide short responses for parts a.-d. below.
a. Calculate each of the following:
i. $\prod_{i=1}^{4}(2 i)=2 \cdot 4 \cdot 6 \cdot 8=384$
ii. $\sum_{i=1}^{4}(2 i-1)=1+3+5+7=16$
iii. $\frac{4!}{2!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}=4.3=12$
iv. $\binom{6}{2}=\frac{6!}{2!4!}=\frac{6 \cdot 5}{2 \cdot 1}=15$
v. $\binom{6}{4}=\frac{6!}{4!.2!}=15$
vi. $\binom{6}{0}=\frac{6 .}{0!\cdot 6!}=\frac{1}{0!}=1$.
b. Suppose the sequence $a_{1}, a_{2}, a_{3}, \ldots$ begins with the terms $\begin{gathered}a_{1}, ~ \\ 8,-27, \\ a_{2}\end{gathered} a_{3} \stackrel{a_{1}}{a_{1}},-125,216, \ldots$. Find an explicit formula for a_{n}.

$$
2^{3}-3^{3} \quad 4^{3}-5^{-3} \quad 6^{3}
$$

$$
a_{n}=(-1)^{n+1}(n+1)^{3}
$$

c. Write the product $(1-t)\left(1-2 t^{2}\right)\left(1-3 t^{3}\right)\left(1-4 t^{4}\right)$ using product notation.

$$
\begin{aligned}
& i=1 \quad i=2 \quad i=3 \quad i=4 \\
& i=1 \\
& 4 \\
& \left.i-i+t^{i}\right)
\end{aligned}
$$

d. Transform the sum $\sum_{j=3}^{n+1} \frac{j^{2}-1}{n-j+2}$ by making the change of variable $i=j-2$.

$$
\left.\begin{array}{rl}
i=j-2: j & =3 \Rightarrow i=1 \\
j & =n+1 \\
j=i+2
\end{array}\right\} \quad \sum_{i=n-1}^{n-1} \frac{(i+2)^{2}-1}{n-(i+2)+2}=\sum_{i=1}^{n-1} \frac{i^{2}+4 i+3}{n-i}
$$

4. Find explicit formulas for the following recurrence relations. (You do not need to prove your answers are correct.) Simplify your answers as much as possible: for full credit your answers should include no summation or product notation.
a. $a_{1}=1, a_{k}=a_{k-1}+2$ for all $k \geq 2$.

$$
\begin{aligned}
a_{2}=a_{1}+2 & =1+2 \\
a_{3}=a_{2}+2 & =(1+2)+2 \\
a_{4}=a_{3}+2 & =((1+2)+2)+2 \\
& =1+3.2 \\
& =4.2-1
\end{aligned}
$$

b. $b_{1}=2, b_{k}=k \cdot b_{k-1}$ for all $k \geq 2$.

$$
\begin{aligned}
b_{2} & =2 \cdot b_{1}
\end{aligned}=2.2
$$

c. $c_{1}=0, c_{k}=c_{k}+2 k$ for all $k \geq 2$.

$$
\begin{aligned}
c_{2}=c_{1}+2(2) & =2(2) \\
c_{3}=c_{2}+2(3) & =2(2)+2(3) \\
c_{1}=c_{3}+2(4) & =2(2)+2(3)+2(4) \\
& =2(2+3+4)
\end{aligned}
$$

$$
\begin{aligned}
C_{n} & =2(2+3+\cdots+n) \\
& =2(1+2+\cdots+n-1) \\
& =2\left(\frac{n(n+1)}{2}-1\right) \\
& =n(n+1)-2, \\
& \text { so } \quad C_{n}=n^{2}+n-2
\end{aligned}
$$

d. $d_{1}=1, d_{k}=2 d_{k-1}+1$ for all $k \geq 2$.

$$
\begin{aligned}
d_{2}=2 d_{1}+1 & =2(1)+1=2+1 \\
d_{3}=2 d_{2}+1 & =2(2(1)+1)+1=2^{2}+2+1 \\
d_{4}=2 d_{3}+1 & =2(2(2(1)+1)+1)+1 \\
& =2^{3}+2^{2}+2+1
\end{aligned}
$$

So $d_{n}=\underbrace{1+2+2^{2}+\cdots+2^{n-1}}_{\text {geometric }}=\frac{2^{n}-1}{2-1}: d_{n}=2^{n}-1$.

