Math 270 Basic Discrete Math
Practice Test 4
Sections 5.8, 5.9, 6.1, 8.1, 8.2, 8.3

Name: (Please Print) go\w‘\.\:ni

Directions: Answer the problems below. You may use scientific (non-graphing) calculators,
but no other electronic devices. Show all work.

1. Let aq,as,as, ... be the sequence defined recursively as follows:
a1 =9, ap = 21, and for all k > 3, ar = Hap_1 — 6ay_s.

Find an explicit formula for a,,.
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2. In this problem, let A ={1,2,3,4,5,6}. Answer a.-c. below.

a. Describe a relation R on A which is reflexive but is not symmetric by (i) drawing the
digraph for R and (ii) listing the elements of R in set-roster notation.
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b. Draw the digraph for an equivalence relation S on A which has three distinct equivalence
classes: {1,2}, {3}, and {4,5,6}. (You only need to draw the digraph.)
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c. Let T be the equivalence relation on A given by
Ty < 3|(2* —y?).

What are T’s distinct equivalence classes?
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3. Answer parts a. and b. below.
a. Let the universe U = {1,2,3,4,5,6,7,8,9,10} and let
A={1,23,4}, B=1{2,4,6,8,10}, and C ={3,6,9}.

Caleulate each of the following:
i AUB= Y1, 23,4 6. y,w's
i. Bnc= §L7%

i, (AUB)—C= 91.2,9,%,103

v. ANBNC = %

v. (AUBF= 715 7, q’g

b. Draw a Venn diagram for three sets A, B, C' which satisfy the following conditions:

ACB, ANC+o, BNC +# @.




4. Define a set S of integers recursively as follows:

I. Base: 3¢ S.

II. Recursion: if k£ € S, then
I(a) k+6€ S

ITI. Restriction: Nothing is in S other than objects defined in I, I1 above.

Use structural induction to prove that every integer n € S is divisible by 3.
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5. Answer parts a.-c. below.

a. Define the sets

A={n€Z|n=4a+1 for some a € Z}, and
B={me&Z|m=4b+ 3 for some b € Z}.

Are A and B disjoint? Why or why not?
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b. Express the power set Z2({1,2,3}) in set-roster notation.
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