\qquad Solutius

Directions: Answer the problems below. You may use scientific (non-graphing) calculators, but no other electronic devices. Show all work.

1. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence defined recursively as follows:

$$
a_{1}=9, a_{2}=21, \text { and for all } k \geq 3, a_{k}=5 a_{k-1}-6 a_{k-2} .
$$

Find an explicit formula for a_{n}.
The characteristic equation is $t^{2}-5 t+6=0$

$$
(t-2)(t-3)=0
$$

so roots are $t=2,3$. hence

$$
\begin{aligned}
a_{n} & =C \cdot 2^{n}+D \cdot 3^{n} \text { for rue } C \cdot D . \\
a_{1}=9 & =C \cdot 2+D \cdot 3 \Rightarrow \underbrace{2 C+3 a_{1}}_{E \cdot 3 D=9} \\
a_{2}=21 & =C \cdot 2^{2}+D \cdot 3^{2} \Rightarrow \underbrace{4 C+9 D=21}_{E a_{2}}
\end{aligned}
$$

By subtuctity $E a_{2}-2\left(E a_{1}\right)$ we get $3 D=21-18=3$, so $D=1$, and hence $C=\frac{1}{2}(9-3)=3$.

Therese,

$$
a_{n}=3 \cdot 2^{n}+3^{n}
$$

2. In this problem, let $A=\{1,2,3,4,5,6\}$. Answer a.-c. below.
a. Describe a relation R on A which is reflexive but is not symmetric by (i) drawing the digraph for R and (ii) listing the elements of R in set-roster notation.
(i)

(6)

(ii)

$$
\begin{aligned}
R=\{ & (1,1),(1,2),(2,2),(3,3), \\
& (4,4),(5,5),(6,6)\} .
\end{aligned}
$$

b. Draw the digraph for an equivalence relation S on A which has three distinct equivalence classes: $\{1,2\},\{3\}$, and $\{4,5,6\}$. (You only need to draw the digraph.)

c. Let T be the equivalence relation on A given by

$$
x T y \quad \Leftrightarrow \quad 3 \mid\left(x^{2}-y^{2}\right)
$$

What are T 's distinct equivalence classes?

$$
\begin{aligned}
& \text { For }[\lambda]: 1 T 1,1 T 2,1 T 4,1 T 5,1 \pi 3,1 \neq 6 ; \\
& 20[1]=\{1,2,4,5\}
\end{aligned}
$$

$N_{\text {a st }}[3]: 3 T 3,3 T 6$, io $[3]=\{3,6\}$ n no denton A left. The distort equate chases be $\{1,2,4,5\},\{3,6\}$.
3. Answer parts a. and b. below.
a. Let the universe $\mathcal{U}=\{1,2,3,4,5,6,7,8,9,10\}$ and let

$$
A=\{1,2,3,4\}, \quad B=\{2,4,6,8,10\}, \quad \text { and } \quad C=\{3,6,9\} .
$$

Calculate each of the following:
i. $A \cup B=\{1,2,3,4,6,8,10\}$
ii. $B \cap C=\{6\}$
iii. $(A \cup B)-C=\{1,2,4,8,10\}$
iv. $A \cap B \cap C=\varnothing$
v. $(A \cup B)^{c}=\{5,7,9\}$
b. Draw a Venn diagram for three sets A, B, C which satisfy the following conditions:

$$
A \subseteq B, A \cap C \neq \varnothing, B \cap C \neq \varnothing
$$

4. Define a set S of integers recursively as follows:
I. Base: $3 \in S$.
II. Recursion: if $k \in S$, then
$\mathrm{II}(\mathrm{a}) k+6 \in S$
III. Restriction: Nothing is in S other than objects defined in $I, I I$ above.

Use structural induction to prove that every integer $n \in S$ is divisible by
Proof. Let $P(n)=$ " $3 / n$ " : we show $P(n)$ holds for all $n \in S$ by structural inducts.

Base: The ally element of the base is $n=3$, ard snick $3(3, P(3)$ holds.
Inductive Step: let $k \in S$ and suppose $P(k)$ holes, so $3 / k$. The recession for S has orly one rale, which applied to k gives us $k+6$.
Sins $31 k, k=3 q$ for some $q \in Z$, so $k+6=3 q+6=3(q+2)$. As $q+2 \in \mathbb{b}$ clos we, $3 \mid(k+6)$ by detintin, so $P(k+6)$ holds, completion the inductive step.

Spice no other liteges lie in soother then those obtared for the base and the recossien, $P(n)$ held s for all $n \in S$.
5. Answer parts a.-c. below.
a. Define the sets

$$
\begin{aligned}
& A=\{n \in \mathbb{Z} \mid n=4 a+1 \text { for some } a \in \mathbb{Z}\}, \text { and } \\
& B=\{m \in \mathbb{Z} \mid m=4 b+3 \text { for some } b \in \mathbb{Z}\}
\end{aligned}
$$

Are A and B disjoint? Why or why not?

Yes, they are disjoint. Suppose otherwise, that some n resits in $A \cap B$. Then sine $n \in A, n \bmod 4=1$, and sine $n \in B$, $n \bmod 4=3$. But this contradicts the uniqueness of the QuotientRemainder Theorem, so no such n exists.
b. Express the power set $\mathscr{P}(\{1,2,3\})$ in set-roster notation.

$$
\{\phi,\{13,\{2\},\{3\},\{1.2\},\{1.3\},\{2.3\},\{1.2 .3\}\}
$$

